「AI×ヘルスケア」トークセッションがスタート

本荘修二氏(以下、本荘):AIも盛り上がっていますね。私は医療系ベンチャー振興推進会議の座長をやっています本荘といいます。よろしくお願いします。

(会場拍手)

曽山明彦氏(以下、曽山):私は平の委員をやっております、曽山と申します。LINK-Jというところにおりまして、日本橋でこういったイベントをたくさんやっています。

今回の、厚労省主催であるJHVSという3日間のシンポジウムを、本荘さん、こちらに座っている奥田さんと3人で、企画から協力していろいろやっています。今日は最初だけ、(本荘さんと)2人でちょっと漫談をやりながらご紹介していこうと思いますので、よろしくお願いします。

本荘:今日は前半がスペシャルセッションです。「AI×ヘルスケア」というテーマで、こういうメンツを合わせて議論するというのは、おそらく日本でもけっこうレアなんじゃないかと思っております。自信のある人選なので、そのあとの交流会で、みなさんにつながっていただこうと思っております。そのほかに、なにか注意事項ありますか?

曽山:いや、とくには。もうざっくばらんにいきたいと思っていますので。前のセッション「Women × Healthcare」に負けないようにがんばります。

本荘:では、始めようと思います。まずはモデレーターです。『医療4.0』という本を知っている人(はいますか)?

(会場挙手)

おっ、認知度すごいですね。今日は著者の加藤(浩晃)さんにモデレーターをやっていただきます。拍手。

(会場拍手)

加藤さんが役員をやっていらっしゃるアイリスというすばらしい会社があって、私のブログやFacebookグループでちょっと紹介させていただきました。非常にユニークで、人間的な魅力のあふれる沖山社長、よろしくお願いします。

沖山翔氏(以下、沖山):よろしくお願いします。

(会場拍手)

本荘:そして、もうそのものずばり「AIメディカル」という社名をつけていただきました多田社長、お願いいたします。

多田智裕氏(以下、多田):よろしくお願いします。

(会場拍手)

本荘:そして、いまや世界を代表するAIの会社でありますエヌビディア・ジャパンから、山田さんに来ていただきました。

山田泰永氏(以下、山田):よろしくお願いします。

(会場拍手)

本荘:ちなみに多田さんの会社は、エヌビディアさんの「Inception Program」というベンチャーサポートのプログラムの最終選考までいったというご縁のある面子でございます。

厚労省がロードマップを敷く、重点6分野

本荘:じゃあ紹介はこのぐらいにして、マイクを加藤さんに譲ります。お願いいたします。

加藤浩晃氏(以下、加藤):みなさん、よろしくお願いします。

この時間はAIミートアップということで、今盛り上がってきている「医療×AI分野」、それから「医師×起業家」というところについて、お二人の先生、そしてテクノロジー企業がサポートしてくれているということで来ていただきました。その3人とモデレーターの僕を含めて4人で、この45分間をお送りしようと思っています。

今もお二人から医療×AI分野についてお話しいただいたように、盛り上がってきているところです。国としては、例えば昨年の6月に保健医療分野におけるAI活用懇談会の報告書などが出ております。その重点6分野について、ゲノム、画像、診断・治療、認知症、手術支援ともうひとつ、創薬(医薬品開発)ですね。この6分野について厚生労働省としてのロードマップが出ています。

また、8月ぐらいから保健医療分野におけるAI開発コンソーシアムが始まりました。先月9月27日には第2回の会議が行われていて、今後どうしていくかといった話もあります。内閣府では、AIホスピタルの話も今進んでいるような感じです。

今日は医療・ヘルスケア分野において、「これからどのようなことができるか」「こういうところにチャンスがあるんじゃないか」「今後、医療×AI分野はこうしていくといいんじゃないか」といったところについて話し合って、ディスカッションできたらと思っております。

6時間待ちの救急外来は、もはや機能していない

加藤:まず紹介があると聞いていましたが、(紹介が)ないようなので、沖山先生から1〜2分、自己紹介と今やっていることなどをお話しいただけたらと思います。お願いします。

沖山:アイリスの沖山と申します。今日はよろしくお願いいたします。

私は救急医をしておりまして、アイリスという会社を立ち上げたのは1年前です。臨床は週末たまに当直をするだけになってしまいまして、基本的にはアイリスでAI医療機器の開発をしています。

私たちの会社は、インフルエンザを診断するための内視鏡型のデバイスを開発しています。いろんな病気で病院へ行くと、お医者さんに3点セットで、あっかんべーをして、「口を開けて『あー』って言って」と言われて、胸の聴診をされると思います。その3つに入るぐらいのたくさんの情報量を持つ、喉の診察をAI化したいと思っているんですね。

いろんな病気で喉が腫れるんですが、腫れの強い・弱いだけではなく、「この病気っぽい腫れ方」というのがあるんです。「どこが腫れているか?」「どんな色に腫れるか?」「どんな色調で腫れているか?」とかですね。

そのなかで、インフルエンザはすごく親和性が高い疾患だと思っていまして。個人的にも、救急外来でインフルエンザの患者さんを1,000人ぐらい見てきました。私のいたのは渋谷区の赤十字の病院で、冬場は患者さんが殺到して、救急外来なのに6時間待ちになっていたりしたんですよ。

もはやこれは救急外来じゃないなと。これを解決しないかぎり、満たされない患者さんのニーズや不安があるなと思いました。もともとはプログラミングや人工知能の研究を趣味でやっていたんですが、そこで起業しようと思って、今開発をしているところです。今日はどうぞよろしくお願いします。

(会場拍手)

70人の医師が1年がかりで行う、200万枚の画像チェック

多田:AIメディカルサービスの多田といいます。私は消化器内視鏡医です。もう20年ほどやっております。僕がなんでベンチャーをやっているかということなのですが、今医療の現場では画像が溢れているんですね。

一番のきっかけとして、まだ都内では徐々にという感じかもしれませんが、胃の検査はバリウムから内視鏡にどんどん変わりつつある、ということがあります。バリウムから内視鏡に変わること自体はぜんぜん良いんですけれども、なにが問題になるかというと、検診の場合、内視鏡の二次読影、ダブルチェックをしないとダメなんですね。

どこの病院とは言いませんが、せっかく検診を受けたのに見落としていたといったことが、昨今ではさんざんニュースになっています。じつは、検診でやった画像をダブルチェックするのは膨大な労力がいるんですよね。

胃カメラであれば、だいたい1人40〜50枚撮影しますね。10年くらい前は20枚しか撮影しませんでした。なぜなら、フィルムが1本20枚で終わってしまうからです。今は見落としがないように40〜50枚くらい撮影するので、単純に10年で3倍になっています。ただ、内視鏡医の数はもちろん3倍にはなっていないということで、それがすごく大変なんですね。

だいたい浦和医師会だと年間5万件内視鏡をやりますけれど、40〜50枚撮影すると、全部で200万枚の画像をダブルチェックしないといけない。だいたい70人の医師が1年がかりでそれをやっているのですが、これがかなりきつい。

要は診察を含めて、普通の仕事が終わったあとにそれをやるわけですね。僕の場合も19時まで外来をやって、それが終わったあと、20時から21時まで1時間集まってやりますが、せいぜい3,000枚ぐらいしかできません。

これは、けっこうきつい作業なんです。それをAIでなんとかできないか、という思いで研究を始めたところ、幸いにも世界初の成果が次々と出てきました。胃がん、ピロリ菌、食道がんなどで、全部世界初の成果で実用化に耐えうる精度を出すことができまして、プロトタイプをローンチして、これからどんどん現場に広げていくという作業をやっているところです。今日はよろしくお願いします。

(会場拍手)

大量のデータを学習させるためのコンピュータ開発

加藤:山田様、お願いします。

山田:エヌビディアの山田と申します。まずエヌビディアという会社は、ひとことで言ってしまうと、非常に高速な計算ができるコンピュータを作っている会社だとご理解いただければと思います。

昨今のAI、とくにディープラーニングですね。こういったAIには大量のデータを学習させる必要があって、よくお聞きになられると思いますが、大量のデータを学習するにはたくさん計算しなければいけないということで、普通のコンピュータを使っていると何日も何日も、ものによっては何ヶ月もかかってしまいます。

それを10倍、20倍、ものによっては100倍も高速化して、どんどん速く回せるようにしましょうということで、速く計算ができるコンピュータを作っています。

そこで私自身がやっていることが2つございます。1つが医療およびヘルスケア・ライフサイエンスといった領域のビジネス開発です。もう1つはスタートアップ企業ですね。スタートアップ企業を支援して、連携していきましょうというようなことをやっています。

1つ目のライフサイエンスと医療については、これも幅広くて。今日いらっしゃっている先生がなさっているのは画像を使った診療だと思いますが、こういった画像診療の領域もそうです。それから、先ほどの重点6領域で出てきましたように、創薬、ゲノム解析、それからライフサイエンス機器、あるいは介護・見守りなど、その計算基盤を提供する身として、薄くなんですけれども、幅広く関わらせていただいているというのが現状です。

あともう1つ、後半のスタートアップ企業との連携では、先生方のような医療のスタートアップ企業さんとはもちろん、医療以外の幅広い産業分野(と)も(連携させていただいています)。それこそ農業のリンゴを摘むロボットみたいなものから、水産業まで幅広くあります。

また、工場の中で不良品検知をしましょう(といったことをやっている企業)だったり……車のボディを塗装していって、わずかな塗りムラなどといった不良品を検知しましょうといったことをやっているような方々も含め、日本で100社ぐらいのパートナーになっています。

そういったことで、非常に幅広い分野と薄く付き合わせていただいているということですので、今日もなにかしらお役に立つところがあればうれしいなと思っております。よろしくお願いします。

(会場拍手)