2024.10.01
自社の社内情報を未来の“ゴミ”にしないための備え 「情報量が多すぎる」時代がもたらす課題とは?
提供:LINE株式会社
リンクをコピー
記事をブックマーク
Hwalsuk Lee氏:ここまでテキスト検出のお話をしてまいりました。これからは日本語におけるテキスト認識についてお話ししようと思います。
先ほど言いましたように、日本語というのはテキスト認識において、英語に比べると何百倍ものたくさんの文字を扱う必要があります。
そのため、たくさんのテキスト認識の論文を検証いたしました。
Scene Text Recognition(STR)とは何でしょうか? STRというのは、文字列を画像パッチ入力から認識するタスクです。
この場合は「UNITED」という文字列を認識するということになります。
STRについてはこれまでいろいろな研究がされてきました。ですが我々がその評価内容を見たとき、たくさんの問題を発見しました。STR手法の比較においてどんな問題があるのでしょうか。
こちらは先行研究の手法のリストです。このリストをご覧いただくとわかるように、まず学習用のデータセットに一貫性がありません。2つ目に、評価用のデータセットにも一貫性がありません。
それからたくさんのダッシュがあります。ダッシュというのは論文の中で報告されていないものです。
そして、スピードとメモリは必ずしも評価の対象にはなっていません。
そこで、我々はUnified STR評価というものを行っています。
統一されたトレーニングのデータセットがあって、評価のデータセットもあります。そして、時間とメモリー消費も。それぞれのメソッドで我々は測定をしています。
ここに6つの関連性のある論文があります。
それぞれの論文は4つのモジュールの組み合わせと言ってもいいと思います。Transformation、Feature Extraction、Sequence Modeling、そしてPredictionです。ここでは時間の関係でそれぞれのモジュールの詳細は触れないでおきます。
ここからは、各モデルをモジュールの組み合わせとして扱っていきます。我々はそれぞれのモジュールを組み合わせて、評価を行いました。Accuracy、時間、それからパラメータの数で見ていきました。
これら6つの既存の手法での組み合わせは、モジュールの2×3×2×2のオプションからなる、取り得る全ての組み合わせの部分集合ということが言えます。
STRのモジュールについて、可能性のある24通りの組み合わせを考えました。そして性能としてAccuracyを時間とモデルサイズ(パラメータ数)に対してプロットしました。
最初に6つの既存手法でのモジュールの組み合わせを時間に対してプロットして比較しました。
それから、Accuracyに対してモデルサイズ(パラメータ数)についてもプロットして見ていきました。
それから、今度はすべての可能性のある組み合わせを先ほどのプロットの上にプロットしました。
これが最終的なトレードオフプロットです。
これらのプロットでもって、モデルを特定の性能要件で選択することができます。Accuracyとか時間、モデルのサイズといった具合です。
1つおもしろいことが観察されましたけれども、一番いいAccuracyのモデルというのが、既存の組み合わせではなくて、新しい組み合わせから生まれたものです。
驚いたのは、最もすばらしい性能は最も良いAccuracyのモデルからもたらされたものだったのです。このモデルを学習しました。キャラクタ数を増やしていき、日本語の言語に堪えるようにしたわけであります。
このモデルで、長い水平あるいは垂直、カーブした日本語のテキストも認識することができました。
さて、これでLINE BRAIN OCRのフルパイプラインについて説明できるようになりました。
与えられた入力画像に対して、テキスト検出というのはそれぞれのテキストの領域を検出することができます。
ボックスと、それからその向き、つまり角度の情報も含んでいます。それから、それぞれのボックスの回転を補正します。
テキスト領域はテキスト認識モデルの中に入力されます。
どの言語であろうと、どういった書かれ方であってもです。そして、認識結果が出力されます。
Single Recognition Modelというのが、水平・垂直のテキスト、日本語、韓国語、英語に対応できることがわかります。
ということで、私の話も終わりに近づいてまいりました。
Webデモサイトをシェアしたいと思います。Webデモでは、テキスト検出とテキスト認識を組み合わせたものを出しております。論文のモデルよりももっと進んだモデルも掲載してます。
ご清聴ありがとうございました。
(会場拍手)
LINE株式会社
2024.10.29
5〜10万円の低単価案件の受注をやめたら労働生産性が劇的に向上 相見積もり案件には提案書を出さないことで見えた“意外な効果”
2024.10.24
パワポ資料の「手戻り」が多すぎる問題の解消法 資料作成のプロが語る、修正の無限ループから抜け出す4つのコツ
2024.10.28
スキル重視の採用を続けた結果、早期離職が増え社員が1人に… 下半期の退職者ゼロを達成した「関係の質」向上の取り組み
2024.10.22
気づかぬうちに評価を下げる「ダメな口癖」3選 デキる人はやっている、上司の指摘に対する上手な返し方
2024.10.24
リスクを取らない人が多い日本は、むしろ稼ぐチャンス? 日本のGDP4位転落の今、個人に必要なマインドとは
2024.10.23
「初任給40万円時代」が、比較的早いうちにやってくる? これから淘汰される会社・生き残る会社の分かれ目
2024.10.23
「どうしてもあなたから買いたい」と言われる営業になるには 『無敗営業』著者が教える、納得感を高める商談の進め方
2024.10.28
“力を抜くこと”がリーダーにとって重要な理由 「人間の達人」タモリさんから学んだ自然体の大切さ
2024.10.29
「テスラの何がすごいのか」がわからない学生たち 起業率2年連続日本一の大学で「Appleのフレームワーク」を教えるわけ
2024.10.30
職場にいる「困った部下」への対処法 上司・部下間で生まれる“常識のズレ”を解消するには
2024.10.29
5〜10万円の低単価案件の受注をやめたら労働生産性が劇的に向上 相見積もり案件には提案書を出さないことで見えた“意外な効果”
2024.10.24
パワポ資料の「手戻り」が多すぎる問題の解消法 資料作成のプロが語る、修正の無限ループから抜け出す4つのコツ
2024.10.28
スキル重視の採用を続けた結果、早期離職が増え社員が1人に… 下半期の退職者ゼロを達成した「関係の質」向上の取り組み
2024.10.22
気づかぬうちに評価を下げる「ダメな口癖」3選 デキる人はやっている、上司の指摘に対する上手な返し方
2024.10.24
リスクを取らない人が多い日本は、むしろ稼ぐチャンス? 日本のGDP4位転落の今、個人に必要なマインドとは
2024.10.23
「初任給40万円時代」が、比較的早いうちにやってくる? これから淘汰される会社・生き残る会社の分かれ目
2024.10.23
「どうしてもあなたから買いたい」と言われる営業になるには 『無敗営業』著者が教える、納得感を高める商談の進め方
2024.10.28
“力を抜くこと”がリーダーにとって重要な理由 「人間の達人」タモリさんから学んだ自然体の大切さ
2024.10.29
「テスラの何がすごいのか」がわからない学生たち 起業率2年連続日本一の大学で「Appleのフレームワーク」を教えるわけ
2024.10.30
職場にいる「困った部下」への対処法 上司・部下間で生まれる“常識のズレ”を解消するには