CLOSE

機械学習エンジニアからプロダクトマネージャーへ。nishibaさんにその理由と軌跡を聞いてみました(前半)(全1記事)

「マネージャーはやらない、プレイヤーでありたいと思っていた」 技術を追求していた西場正浩氏が、プロダクトマネージャーへ転身した理由

DATUM STUDIO株式会社 取締役CAOの里洋平氏が運営するYouTubeチャンネル「里洋平チャンネル」。今回のゲストは、機械学習エンジニアからプロダクトマネージャーへ転身した(※動画収録当時)西場正浩氏。経歴とプロダクトマネージャーになったきっかけを話しました。

機械学習エンジニアからプロダクトマネージャーへ転身

里洋平氏(以下、里):みなさんこんにちは、里洋平です。今回はML(機械学習)エンジニアからPdM(プロダクトマネージャー)をやっている(※動画収録当時)西場さんにお話を聞いていきたいと思います。本日はよろしくお願いします。

西場正浩氏(以下、西場):お願いします。

:さっそくですが、知らない方もいらっしゃると思うので、自己紹介をお願いしてもよろしいでしょうか?

西場:はい、西場といいます。僕はもともと機械学習エンジニアをやっていたのですが、最終的にはプロダクトマネージャーや事業責任者をするようになっていました。

4年くらい前に、医療系のサービスを手がけるITの会社で働き始めて、その時の最初のスタートがMLエンジニアというキャリアです。

機械学習を使ったメルマガのパーソナライズやアルゴリズムを開発する傍ら、AI/MLチームの立ち上げをやってチームビルディングしながら、いろいろな事業に貢献しようという働き方をしている中で、プロダクトマネジメントもやるようになって、プロダクトマネージャーをやっていました。

:ちなみに今はどんなことをされているんですか?

西場:今は完全に組織マネジメントのほうに振っていて、もうプレイングマネージャーではありません。

2021年7月から新しい会社で働いています。前職ではプレイングマネージャーというかたちで、自分も手を動かすことがあったのですが、今の会社では基本的にはプレイングマネージャーではなくてマネージャーというかたち(でやっています)。

ピープルマネジメントもやるし、必要なことはなんでもやりますが、プレイヤーではないですね。

:なるほど、ありがとうございます。

前々職では「クオンツ」を担当 転職に伴い機械学習を始めた

:いろいろおもしろそうなキーワードが出てきたので、これから聞いていきたいと思います。

最初に、前職でMLエンジニアをやられていたという話でしたが、データ分析や機械学習を始めたきっかけを教えてもらってもよろしいでしょうか?

西場:僕は前々職で「クオンツ」と呼ばれる業務をやっていました。銀行で数理モデルを使って金融派生商品のプライシングとかリスク評価をするような業務です。

もともと数学とコンピューターを使う業務だったので、そこからジョブを変えようと思った時に、クオンツ以外で数学やコンピューターを使う仕事ということで、機械学習がその時すごくブームだったので、機械学習を始めることにしました。

なので、前職に転職した時に機械学習の勉強をし始めましたし、実務ではその時が初めてでした。

:実際にやってみてどうでした? クオンツの時に抱いていたイメージと、実際に機械学習を実務でやった時。

西場:非常におもしろかったですね。クオンツは理論がすごく重要で、数式が破綻していたらダメとか、いろいろと数学に厳密な部分があったんです。

機械学習は、工学というか応用で答えがよければとりあえずOKという感覚もあるところがおもしろかったですね。

4年ぐらい前だと、機械学習をやるなら測度論を勉強したほうがいいみたいな話も聞いていて、測度論を使うんだと思ってワクワクしていたのですが、僕がやっている間、測度論を使うことはあまりなかったですね。

論文やリサーチもけっこう読んでいたんですが、実務でそこまで深い話がやれなかったのは、ちょっと残念だなとは思っていますが、非常におもしろかったですね。

:なるほど、ありがとうございます。

もともとマネージャーをやろうとは思っていなかった

:最初にMLエンジニアをやっていて、そこからPdMもやるようになったという話があったと思います。

元からマネージャーに興味があったのか、それとも成り行きでなったのか、「なぜPdMになったのか?」というお話をお聞きしたいと思います。

西場:もともとマネージャーをやる気はありませんでした。私は数理ファイナンスの分野で博士まで取っていたので、もっとスペシャリストとしてやりたいなと思っていたし、前職に転職する時も、マネージャーはやらない、プレイヤーでありたいと強く希望を出して転職活動をしていたので。なので、もともとマネージャーをやろうとは思っていなかったですね。

ただ、機械学習を実務で使っていく上で、自分にプロダクトマネジメントの知識があったほうがいいなと思う部分は多かったです。そういう中でちょっと必要に迫られて、チャレンジしてみようかなという流れでマネージャーになりました。

:なるほど。けっこう必要に迫られてという。専門的にずっとやっていると、なかなかマネジメントをやろうとは思わないですよね。

西場:そうですね。今では僕も普通にやっているので嫌だとかは思わなくなったんですが、最初はけっこう悩みが多かったです。

例えばプレイヤーとして、機械学習エンジニアとしてチャレンジした時は、Googleと思っていたかどうかわかりませんが、将来的には世界的にメチャクチャ有名な人たちと肩を並べて仕事をしたいなという気持ちで取り組み始めた部分もありました。

技術を追求していこうと思っていた中でマネジメントと聞くと、「いや、ちょっと違うな」みたいなと。キャリアアップやステップアップの印象はなくて、ちょっと難しいなとは思っていました。

:そうですよね。

プロダクトマネージャーをやってみて感じたおもしろさとやりがい

:「実際にPdMをやってみてどうでしたか?」みたいなことをお聞きしたいんですが、こんなざっくりな感じで大丈夫ですか(笑)?

西場:最初から「明日からPdMをやろう」という話ではなくて「お客さんやユーザーにとって価値のあることをやりたいな」という思いが先にありました。

「じゃあ、何をやったらいいんだろう?」という時に、「そもそも何に困っているの?」「機械学習は何に使えるんだろう?」というところが、たぶん先に大事なんだろうなと思いました。

「じゃあ、適切な課題を発見しよう」と、適切な課題を発見するために、実際にユーザーに会って、何に困っているのか、なぜそれが欲しいと思っているのか、という話を聞いてプロダクトを作っていく、提案していくということを経験していったかたちですね。

なので、僕は本当にBizDevの人と一緒にお客さんに会うところから始めていて、その時は別にプロダクトマネジメントを自分がやっているとは思っていなかったですね。

そういう意味では、僕はゆるくゆっくりゆっくり徐々に徐々に入っていったというかたちです。

実際にやってみてどうだったかというと、非常におもしろかったですね。

やはり、物を作って、実際に困っている人に届けたりニーズが高いものを作ったりというのは、エンジニアリングという意味でも、機械学習に限らずすごく楽しいことですし、実際に自分たちが作ったものが使われている実感がすごくあります。非常にやりがいも感じるので、そういうことに関われたのはすごくおもしろいなと思いました。

:そうですね。やはり実際の声を聞くと、エンジニアとしてやっていくモチベーションだったり、先ほど言っていましたが実感だったりがぜんぜん変わってきますよね。

あと「自分事化する」というか、のめり込める感じがありますよね。

西場:そうですね。本当におっしゃるとおりで、自分事化もありますし、実体験というか、もっとリアルな感触がある話になってくるのですごくおもしろいなとは思いました。

今話しながらちょっと思い出したのですが、そもそも3年前や4年前は、「機械学習は実務で使えない」という話も一部「Twitter」とかで聞くことが多かった時代だと思います。

最近はそういうことも言われなくなりましたが、その時はけっこう言われていて、不景気になると機械学習チームが解散するみたいな話があると聞いていました。

やはり実務で活用するのはすごく難しいんだろうなというのが僕の中にもあって、かつ、僕も機械学習を始めて1年とかしか経っていないですし。

当時前職では機械学習のエンジニアリングのチームを作っていたので、そのチームを大きくさせていきたいし、存続させていきたいし、もっと価値のあることをやっていきたい中で、Twitterとかでそういう話を目にすると、「もっと役に立つにはどうしたらいいんだろう?」みたいなことをけっこう言っていました。

なので、実際にお客さんの声を聞くのはすごくおもしろかったし、実感を持てたというところと、かつ、自分たちの存在意義を示さなきゃみたいなところもすごく感じていたので、その両方が重なって、プレイヤーではなくそういうこと(マネジメント職)もやっていこうかなという気持ちになりました。

:なるほど。本当にいい流れですね。

西場:非常によかったと思います。

「おもしろい」と「お金を払う」は別の問題

:BizDevの方と一緒にとおっしゃっていましたね。最初のうちは、なかなかうまくいかなかったこともあるんじゃないかなと思うのですが、苦労話はありますか?

西場:最後の最後までぜんぜんうまくいかなかったです。プロダクトマネジメントは本当に難しいなと思いました。

プロダクトで失敗したものもいっぱいあります。たぶん失敗したもののほうが多くて、僕がかかわったところで、うまくいったのは本当にいくつかあるだけだと思っていますね。

大変だったのは、みんな「おもしろい」って言うんですよね。ただ、お金を払うかどうかは別の問題でした。

前職の僕の上司がプロダクトマネージャーだったので、その人に「いろは」をいろいろ教えてもらってやっていました。その時にすごく言われたのが「本当に価値のあることをやらなきゃいけない」という話。

例えば、機械学習を使って、なにかを予測したり、画像を生成したり、顔の識別をやったり、いろいろやると「おもしろい」とか「すごい」となるのですが、それがお客さんやユーザーの何を解決しているのか。何に困っていて何を解決するのかにつなげるのは非常に難しいと今でも思いますし、大変だなとは思います。

:なるほど。

西場:最近は『EMPOWERED』という本が流行っていますが、やはりプロダクトチーム化というところがすごく難しいですよね。

やはり、言ったものを作ってくれみたいなエンジニアリングチーム、プロダクトチームではないと思います。

みんなにきちんと言語化して、僕らが何をやろうとしているのかとか、どういう意義があるのかとか、実際のユーザーの声とかどういうのがあるのか、をきちんと伝えて、チームとして一丸となってそのプロダクトを作っていくようにリードしていくのもプロダクトマネージャーの仕事だと思います。

そういうところがいろいろ出てきて難しいなと思います。考えることが多いので大変かなとは思いました。

:なんとなくですが、入社した時に描いていたキャリアとは随分変わったんだろうなと思いました。

西場:そうなんですよ。前々職では4年間ちょっと働いたんですが、その時は、次の転職する時は、本当にグローバルで、ひょっとしたら日本から出ていくかもしれないと思っていましたし、プレイヤーとしてもうちょっと論文も出している予定だったんですが、何一つ書けなかったですね(笑)。

なので、想定とかなり違いますね。結局今は、周りの人にも伝えているのですが、プレイヤーの部分はほとんどやらずに、マネージャーに専念する状況になっているので、まったく違うなと思いますね。

:なるほど、なるほど。

(次回へつづく)

続きを読むには会員登録
(無料)が必要です。

会員登録していただくと、すべての記事が制限なく閲覧でき、
著者フォローや記事の保存機能など、便利な機能がご利用いただけます。

無料会員登録

会員の方はこちら

この記事のスピーカー

同じログの記事

コミュニティ情報

Brand Topics

Brand Topics

  • 1年足らずでエンジニアの生産性が10%改善した、AIツールの全社導入 27年間右肩上がりのサイバーエージェントが成長し続ける秘訣

人気の記事

新着イベント

ログミーBusinessに
記事掲載しませんか?

イベント・インタビュー・対談 etc.

“編集しない編集”で、
スピーカーの「意図をそのまま」お届け!