
2025.03.19
急成長するドバイ不動産市場の今 投資のチャンスと注意点を専門家が解説
リンクをコピー
記事をブックマーク
大嶋勇樹氏:最後に、一番おもしろいモジュールであるAgentsを見ていこうと思います。質問をまあまあもらっていますが、最後までいってから回答できればと思います。最後に、一番おもしろいのがこのAgentsです。
まずAgentsのモチベーションですが、Indexesを使ってVector Storeを検索する以外にも、LLMが必要に応じていろいろなことをしてくれたら夢が広がると思います。
例えば、必要に応じて知らない知識だったらGoogleで検索してくれるとか。例えば「この環境について知りたい」みたいな状況だったら、Bashでコマンドを実行してくれるとか、Pythonのスクリプトを実行してくれるとかしてくれたら、本当に夢が広がるんじゃないかと思います。そこで登場するのがAgentsというものになります。
Agentsを使うとLLMがいろいろなツールを選択して使いながら動作します。実際にはLLMがツールを使うわけじゃないんですが、まるでLLMがツールを使うかのように動きます。例えばBash、Google Search、IFTTT、Python、PythonのRequestsとか、Wikipedia APIなど、いろいろなものを使いながらLLMが課題を解決してくれます。
まずコードを見ようと思いますが、モデル、text-davinci-003を用意して、load_toolsというものでterminalというツールを用意しています。このterminalはいわゆるBash、コマンドを打てるツールですね。これを設定したagent_executorを作り、それをrun(させます)。
その時に「現在のディレクトリにあるファイルの一覧を教えてください」としてrunを実行します。すると、LLMは本来僕の今いるディレクトリにどんなファイルがあるかなんて知らないはずなんですが、このツールを使ってちゃんと答えてくれます。
poetry run python...。これを実行します。
verboseに出力するようになっているので中の動きもちょっと見えるんですが、いろいろやります。(画面を示して)最終結果はこれですね。ちゃんとこのディレクトリにあるものを答えてくれているんですね。
一時期ChatGPTにlsとかそういうコマンドを実行させるようなことがちょっと流行ったというか、「コマンドを実行したらどうなると思いますか?」みたいに妄想させることが流行ったことがあると思うんですが、これは妄想させているわけじゃなくて、ディレクトリにあるものを表示しているんですね。APIの応答としてこれが返ってきています。
なぜLLMがlsコマンドを実行した結果を返せるのかを見ていこうと思います。
このAgentsは「MRKL」や「ReAct」といった仕組みのプロンプトで動いています。MRKLは“ミラクル”と読むらしいですね。中の細かい紹介まではできませんが、こういった仕組みで動いています。
どんな動きか見ていこうと思います。まずはLLMを呼び出します。「Answer the following questions as best you can. You have access to the following tools:」ということで、「下のほうにある質問にできるだけベストな回答をしてね」と(渡します)。
「次に続くツールが使えますよ」ということでツールを紹介しています。これはツールとしてコードで設定したものですね。「『Terminal』という名前で、コマンドを実行できるツールです」という説明が書いてあります。
そして「LLMに求めるフォーマットはこうしてください」ということが書いてあります。例えば「Question:」と来たら「ここに質問があります」と。「Thought:」と来たら「ここにあなたの考え、AIの考えを書いてください」と。ポイントは、「Action:」と書いて「使うツールの名前を書いてください」、「Action Input:」の箇所に、「使うツールの引数を書いてくださいみたい」なことが書いてあるんですね。
そして続きの説明がいろいろあって、最後に「Question: 」。現在のディレクトリにあるファイルの一覧を教えてください。「Thought:」。考えてね。これをAPIに投げます。
すると、LLMは「I need to find a command that will list the files in the current directory」、つまりカレントディレクトリにあるファイルをリストアップするコマンドを見つける必要がある。「Action: Terminal」「Action Input: ls」、こんな応答を返してくるんですね。
LangChainのAgentsはこの応答からActionとAction Inputを抽出して実行します。ソースコードを見ると無理矢理に正規表現で抽出しているんですが、これを抽出してTerminal、lsと来たからBashでlsを実行するんだなとLangChainのAgentsが判断して実行します。
LangChainのAgentsはそれを実行できるので、実行した結果を先ほどまでのプロンプトの下のほうに入れて、またLLMのAPIを叩きます。
すると今度LLMは、「I now know the final answer」「最終的な回答がわかった、ファイナルアンサーはこれだ」という回答をくれるんですね。これに対してLangChainのAgentsは、「Final Answer:」の箇所を抜き出して、こんなふうに表示してくれます。
ということで、Agentsはややこしいことをしているわりにちょっと駆け足で来ちゃいましたが、MRKLやReActといったプロンプトの仕組みを実装したAgentsを使うことで、LLMとの対話にとどまらず、LLMにアクションを起こさせることができたわけですね。このAgentsを応用すると、LLMで実現できることは本当に大きく広がると思います。
ちなみに、LangChainには「Human as a tool」という人間を使うツールも提供されていて、なかなかおもしろいなと。「Human are AGI so they can certainly be……」、人間はAGIなのでAIが困った時に助けてくれますよ、と。AGIは汎用人工知能ですね。人間が人工かはちょっと置いておいて、こんなツールも提供されていてなかなかおもしろいですね。
というところで駆け足ではありますが、ひととおりLangChainの主な概念を紹介したので、最後にちょっとまとめさせていただきます。
今日の勉強会、大変駆け足ではありましたが、LangChainに登場する基本的な概念を整理してきました。LangChainに登場する概念を理解するには、中で行われているプロンプトエンジニアリングがポイントだと思います。プロンプトエンジニアリングの手法自体も、本当にいろいろあると思いますが、調べていくとけっこうおもしろいですね。
LangChain自体は簡単に触ることができます。インストールはpip installだけです。ぜひ触ってみてもらえればと思います。
関連タグ:
プロンプトエンジニアリングから始めるLangChain入門講座 大嶋勇樹氏が教える、OpenAIのモデルとAPIの使い方
AIモデルへの入力を最適化し、意図した出力を得るために 例から学ぶ、プロンプトエンジニアリングの概要
そもそもLangChainは何に使えるのか 3つの基礎的なモジュール「Models」「Prompts」「Chains」から考える活用事例
保存した文章を利用する「Indexes」、過去のやりとりを記憶する「Memory」 LLMにできることを拡張する2つのLangChainモジュール
まるで“LLMがツールを使う”かのように動作する デモから見るLangChainのモジュール「Agents」の使い方
2025.03.21
マネージャーの「自分でやったほうが早い」という行動で失うもの 効率・スピード重視の職場に足りていない考え方
2025.03.17
不確実な時代だからこそ「知らないこと」を武器にする ハーバード首席卒業生の逆説的なメッセージ
2025.03.17
いくら読書をしても「成長しない人」が見落としていること 10分でできる「正しい学び方」
2025.03.17
ソフトバンクとOpenAIにとって「歴史的な日」になった 孫正義氏が語る、AI革命の全ぼう
2025.03.19
部下の「タスクの先延ばし」が少ない上司の特徴とは? 研究が示す、先延ばし行動を減らすリーダーの条件
2025.03.18
フェデラー氏が語る「努力しない成功は神話」という真実 ダートマス卒業生に贈る勝利の秘訣
2025.03.18
全知全能の最先端AI「Cristal」が企業の大脳となる ソフトバンク孫正義氏が語る、現代における「超知性」の可能性
2025.03.19
フェデラー氏が語る「ただの1ポイント」の哲学 ウィンブルドン敗北から学んだ失敗からの立ち直り方
2025.03.18
部下に「そうかなぁ?」と思われない1on1の問いかけ エンゲージメントを高めるマネジメントに欠かせない「聴く」技術
2025.03.19
組織をダメにする“害虫”の正体は間違った思い込み AIやDXなど手段のみにこだわるダメ上司の見極め方
【手放すTALK LIVE#046】 出版記念イベント 『大きなシステムと小さなファンタジー』 一つ一つのいのちが大切にされる社会へ
2025.02.03 - 2025.02.03
「聴く」から始まる組織変革 〜篠田真貴子さんと考える対話型マネジメント〜
2025.02.14 - 2025.02.14
「目の前の利益を優先する」心理とは:ビジネスに活かせる意思決定の科学
2025.02.12 - 2025.02.12
新刊『組織をダメにするのは誰か?職場の問題解決入門』出版記念セミナー
2025.02.04 - 2025.02.04
会社の体質、これまでどおりで大丈夫? 職場に新たな風を吹き込むための「ネガティブ・ケイパビリティ」入門
2025.02.10 - 2025.02.10