
2025.03.19
急成長するドバイ不動産市場の今 投資のチャンスと注意点を専門家が解説
テニスのプレー開始点をサーブに頼りすぎず判別したい!(全1記事)
リンクをコピー
記事をブックマーク
鈴木碩人氏(以下、鈴木):自己紹介です。鈴木碩人といいます。2021年4月から、IT系の企業の研究開発職に入っていて、スポーツ歴は、テニスを10年くらいしています。『ベイビーステップ』みたいな頭脳戦ができたらおもしろいかなと最近思っています。
目次です。背景、着想、実験、結果、宣伝という構成で発表したいと思います。
まず背景について説明します。
試合は下の図のように、階層構造をもっているので、分析する時にポイントごとに集計する必要があります。なので、ショットの検出だけではなくて、何のゲームで何ポイント目かも分析においては必要になります。
プレーの切れ目はどう判断するのか、単純にサーブの検出ができればいいのかというと、そうではありません。実際に自分で録画して、画像認識をしてみると、撮影条件が悪かったり、フォームにばらつきがあったりして、けっこうサーブの検出漏れが発生するからです。
そこで、サーブの検出力に依存しすぎずに、プレーの開始点を見つけたいなと思いました。
着想です。サーブを打つ場合は、プレーヤーの位置関係や動作関係に制約があるので、そういうものを利用するとよりロバストに、プレーの開始点を見つけられるんじゃないかなと思いました。
実験について、説明します。
概要です。最初はCenterNetを使って、最後は決定木を使っています。
順々に説明します。まず、CenterNetでプレーヤーの動作認識と、コート検出をします。動作は、サーブ、ストローク、何もしていないの3種類としています。また、時系列入力にはしていません。
次に、CenterNetを使って検出したプレーヤーの矩形から、プレーヤーのコート状の座標を計算します。お馴染みのHomography変換を使っています。
最後にプレーヤーのコート座標と、動作の確率を使って、プレー中かどうかを2値分類します。
実験の結果です。
まずサーブの認識精度ですが、手前側のプレーヤーはけっこう精度が良いのですが、奥側のプレーヤーは、けっこう精度が悪いです。これは余談ですが、ラケットを含めると精度が上昇するというTipsがあります。
さきほど、精度が良かったと言った手前側のプレーヤーも、誤検知がある程度は発生しています。
それを踏まえたうえで、プレー分割をプレーヤーのコート座標も含めるとどうなるかというと、一応精度が向上していることがわかりました。重要度を見ても、座標の情報が効いてることがわかりました。
まとめです。野良試合では、画像認識にけっこう限界があるので、ちょっとしたルールや、工夫を利用することで、それを補うことが重要なんじゃないかなと思いました。
最後は、宣伝なのですが、戦術分析をするWebアプリを作っているので、なにか知見があったら教えていただきたいですし、興味のある方がいらっしゃったらご連絡ください。
ご清聴ありがとうございました。
(司会者拍手)
司会者:おもしろい観点でいろいろ分析をされていて、素敵だと思いました。この野良試合と言ってるのは、ご自身の試合を動画で撮って、アノテーションを自分でやったということですか?
鈴木:そうですね。
司会者:なるほど。どのぐらいアノテーションはかかったんですか?
鈴木:6ゲーム分くらいやりました。何時間必要だったんだろう。覚えてないぐらい、けっこう時間が必要でした(笑)。
司会者:そうですよね。なかなか、こういうデータは、一般の試合のやつを取ってくるのはちょっと難しいですよね。
鈴木:そうですね、なかなか大変です。こんな感じで、けっこうフェンスで3メートルくらいにくっつけても、後ろのほうのコートはあんまり見えなくて。一般人が映そうと思うと、これぐらいが限界なのかなという感じです。
司会者:そうですよね。中継ではよっぽどいいカメラを使っていますしね(笑)。1個、質問が来ています。テニスプレーヤーさんによってサーブ前のクセがいろいろとあるというところで「ボールをバウンドさせるのとかが、特徴量として使えたりしないんでしょうか?」と来ていますが、このあたりどうでしょうか?
鈴木:確かに。そういうのは使えそうだと思います。ボールのバウンド動作ですね。
司会者:プレー中にはなかなか発生し得ない動作ですからね。
鈴木:そうですね、確かに。
司会者:おもしろいですね、いいアイデアな気がします。
鈴木:そうだと思います。ありがとうございます。
司会者:もう1個質問が来ていますね。「CenterNetで取ったデータをどうLightGBMに入れたか」
鈴木:この表を見てもらうといいと思います。奥側と手前側のプレーヤー、コート座標、CenterNetを使って出力した動作のパーセンテージを入力にしています。
司会者:このコート座標はそれぞれ分解して、別のカラムにしてということですかね。ありがとうございます。それではこれで発表を終了としたいと思います。
2025.03.21
マネージャーの「自分でやったほうが早い」という行動で失うもの 効率・スピード重視の職場に足りていない考え方
2025.03.17
不確実な時代だからこそ「知らないこと」を武器にする ハーバード首席卒業生の逆説的なメッセージ
2025.03.17
いくら読書をしても「成長しない人」が見落としていること 10分でできる「正しい学び方」
2025.03.19
部下の「タスクの先延ばし」が少ない上司の特徴とは? 研究が示す、先延ばし行動を減らすリーダーの条件
2025.03.17
ソフトバンクとOpenAIにとって「歴史的な日」になった 孫正義氏が語る、AI革命の全ぼう
2025.03.18
フェデラー氏が語る「努力しない成功は神話」という真実 ダートマス卒業生に贈る勝利の秘訣
2025.03.18
全知全能の最先端AI「Cristal」が企業の大脳となる ソフトバンク孫正義氏が語る、現代における「超知性」の可能性
2025.03.19
フェデラー氏が語る「ただの1ポイント」の哲学 ウィンブルドン敗北から学んだ失敗からの立ち直り方
2025.03.18
部下に「そうかなぁ?」と思われない1on1の問いかけ エンゲージメントを高めるマネジメントに欠かせない「聴く」技術
2025.03.19
組織をダメにする“害虫”の正体は間違った思い込み AIやDXなど手段のみにこだわるダメ上司の見極め方
2025.03.21
マネージャーの「自分でやったほうが早い」という行動で失うもの 効率・スピード重視の職場に足りていない考え方
2025.03.17
不確実な時代だからこそ「知らないこと」を武器にする ハーバード首席卒業生の逆説的なメッセージ
2025.03.17
いくら読書をしても「成長しない人」が見落としていること 10分でできる「正しい学び方」
2025.03.19
部下の「タスクの先延ばし」が少ない上司の特徴とは? 研究が示す、先延ばし行動を減らすリーダーの条件
2025.03.17
ソフトバンクとOpenAIにとって「歴史的な日」になった 孫正義氏が語る、AI革命の全ぼう
2025.03.18
フェデラー氏が語る「努力しない成功は神話」という真実 ダートマス卒業生に贈る勝利の秘訣
2025.03.18
全知全能の最先端AI「Cristal」が企業の大脳となる ソフトバンク孫正義氏が語る、現代における「超知性」の可能性
2025.03.19
フェデラー氏が語る「ただの1ポイント」の哲学 ウィンブルドン敗北から学んだ失敗からの立ち直り方
2025.03.18
部下に「そうかなぁ?」と思われない1on1の問いかけ エンゲージメントを高めるマネジメントに欠かせない「聴く」技術
2025.03.19
組織をダメにする“害虫”の正体は間違った思い込み AIやDXなど手段のみにこだわるダメ上司の見極め方
青木耕平さんとザッソウ(#156〜158)
2025.02.05 - 2025.03.19
片付けパパ対談【特別編】豊かな人生を過ごすための「投資」&「交渉術」 ~チャンスを逃さず信頼関係も育むコツ~
2025.02.10 - 2025.02.10
グローバルの経営理論に学ぶ、企業アルムナイ成功への示唆〜中央大学ビジネススクール 犬飼知徳教授
2025.02.18 - 2025.02.18
【手放すTALK LIVE#046】 出版記念イベント 『大きなシステムと小さなファンタジー』 一つ一つのいのちが大切にされる社会へ
2025.02.03 - 2025.02.03
「聴く」から始まる組織変革 〜篠田真貴子さんと考える対話型マネジメント〜
2025.02.14 - 2025.02.14