2024.12.19
システムの穴を運用でカバーしようとしてミス多発… バグが大量発生、決算が合わない状態から業務効率化を実現するまで
テニスのプレー開始点をサーブに頼りすぎず判別したい!(全1記事)
リンクをコピー
記事をブックマーク
鈴木碩人氏(以下、鈴木):自己紹介です。鈴木碩人といいます。2021年4月から、IT系の企業の研究開発職に入っていて、スポーツ歴は、テニスを10年くらいしています。『ベイビーステップ』みたいな頭脳戦ができたらおもしろいかなと最近思っています。
目次です。背景、着想、実験、結果、宣伝という構成で発表したいと思います。
まず背景について説明します。
試合は下の図のように、階層構造をもっているので、分析する時にポイントごとに集計する必要があります。なので、ショットの検出だけではなくて、何のゲームで何ポイント目かも分析においては必要になります。
プレーの切れ目はどう判断するのか、単純にサーブの検出ができればいいのかというと、そうではありません。実際に自分で録画して、画像認識をしてみると、撮影条件が悪かったり、フォームにばらつきがあったりして、けっこうサーブの検出漏れが発生するからです。
そこで、サーブの検出力に依存しすぎずに、プレーの開始点を見つけたいなと思いました。
着想です。サーブを打つ場合は、プレーヤーの位置関係や動作関係に制約があるので、そういうものを利用するとよりロバストに、プレーの開始点を見つけられるんじゃないかなと思いました。
実験について、説明します。
概要です。最初はCenterNetを使って、最後は決定木を使っています。
順々に説明します。まず、CenterNetでプレーヤーの動作認識と、コート検出をします。動作は、サーブ、ストローク、何もしていないの3種類としています。また、時系列入力にはしていません。
次に、CenterNetを使って検出したプレーヤーの矩形から、プレーヤーのコート状の座標を計算します。お馴染みのHomography変換を使っています。
最後にプレーヤーのコート座標と、動作の確率を使って、プレー中かどうかを2値分類します。
実験の結果です。
まずサーブの認識精度ですが、手前側のプレーヤーはけっこう精度が良いのですが、奥側のプレーヤーは、けっこう精度が悪いです。これは余談ですが、ラケットを含めると精度が上昇するというTipsがあります。
さきほど、精度が良かったと言った手前側のプレーヤーも、誤検知がある程度は発生しています。
それを踏まえたうえで、プレー分割をプレーヤーのコート座標も含めるとどうなるかというと、一応精度が向上していることがわかりました。重要度を見ても、座標の情報が効いてることがわかりました。
まとめです。野良試合では、画像認識にけっこう限界があるので、ちょっとしたルールや、工夫を利用することで、それを補うことが重要なんじゃないかなと思いました。
最後は、宣伝なのですが、戦術分析をするWebアプリを作っているので、なにか知見があったら教えていただきたいですし、興味のある方がいらっしゃったらご連絡ください。
ご清聴ありがとうございました。
(司会者拍手)
司会者:おもしろい観点でいろいろ分析をされていて、素敵だと思いました。この野良試合と言ってるのは、ご自身の試合を動画で撮って、アノテーションを自分でやったということですか?
鈴木:そうですね。
司会者:なるほど。どのぐらいアノテーションはかかったんですか?
鈴木:6ゲーム分くらいやりました。何時間必要だったんだろう。覚えてないぐらい、けっこう時間が必要でした(笑)。
司会者:そうですよね。なかなか、こういうデータは、一般の試合のやつを取ってくるのはちょっと難しいですよね。
鈴木:そうですね、なかなか大変です。こんな感じで、けっこうフェンスで3メートルくらいにくっつけても、後ろのほうのコートはあんまり見えなくて。一般人が映そうと思うと、これぐらいが限界なのかなという感じです。
司会者:そうですよね。中継ではよっぽどいいカメラを使っていますしね(笑)。1個、質問が来ています。テニスプレーヤーさんによってサーブ前のクセがいろいろとあるというところで「ボールをバウンドさせるのとかが、特徴量として使えたりしないんでしょうか?」と来ていますが、このあたりどうでしょうか?
鈴木:確かに。そういうのは使えそうだと思います。ボールのバウンド動作ですね。
司会者:プレー中にはなかなか発生し得ない動作ですからね。
鈴木:そうですね、確かに。
司会者:おもしろいですね、いいアイデアな気がします。
鈴木:そうだと思います。ありがとうございます。
司会者:もう1個質問が来ていますね。「CenterNetで取ったデータをどうLightGBMに入れたか」
鈴木:この表を見てもらうといいと思います。奥側と手前側のプレーヤー、コート座標、CenterNetを使って出力した動作のパーセンテージを入力にしています。
司会者:このコート座標はそれぞれ分解して、別のカラムにしてということですかね。ありがとうございます。それではこれで発表を終了としたいと思います。
2024.12.12
会議で発言しやすくなる「心理的安全性」を高めるには ファシリテーションがうまい人の3つの条件
2024.12.19
12万通りの「資格の組み合わせ」の中で厳選された60の項目 532の資格を持つ林雄次氏の新刊『資格のかけ算』の見所
2024.12.16
32歳で成績最下位から1年でトップ営業になれた理由 売るテクニックよりも大事な「あり方」
2023.03.21
民間宇宙開発で高まる「飛行機とロケットの衝突」の危機...どうやって回避する?
2024.12.10
メールのラリー回数でわかる「評価されない人」の特徴 職場での評価を下げる行動5選
2024.12.13
ファシリテーターは「しゃべらないほうがいい」理由 入山章栄氏が語る、心理的安全性の高い場を作るポイント
PR | 2024.12.20
モンスター化したExcelが、ある日突然崩壊 昭和のガス工事会社を生まれ変わらせた、起死回生のノーコード活用術
2024.12.18
「社長以外みんな儲かる給与設計」にした理由 経営者たちが語る、優秀な人材集め・会社を発展させるためのヒント
2024.12.12
今までとこれからで、エンジニアに求められる「スキル」の違い AI時代のエンジニアの未来と生存戦略のカギとは
PR | 2024.11.26
なぜ電話営業はなくならない?その要因は「属人化」 通話内容をデータ化するZoomのクラウドサービス活用術
Climbers Startup JAPAN EXPO 2024 - 秋 -
2024.11.20 - 2024.11.21
『主体的なキャリア形成』を考える~資格のかけ算について〜
2024.12.07 - 2024.12.07
Startup CTO of the year 2024
2024.11.19 - 2024.11.19
社員の力を引き出す経営戦略〜ひとり一人が自ら成長する組織づくり〜
2024.11.20 - 2024.11.20
「確率思考」で未来を見通す 事業を成功に導く意思決定 ~エビデンス・ベースド・マーケティング思考の調査分析で事業に有効な予測手法とは~
2024.11.05 - 2024.11.05