2024.12.19
システムの穴を運用でカバーしようとしてミス多発… バグが大量発生、決算が合わない状態から業務効率化を実現するまで
まろやか巨大数 グラハム数を超えた世界(全1記事)
リンクをコピー
記事をブックマーク
司会者:漫画家の小林銅蟲さん! お願いいたしまーす!
(会場拍手)
小林銅蟲氏(以下、小林):どうも。もうやるんですか?
(会場笑)
小林:よろしくお願いします。今日は、「まろやか巨大数。グラハム数を超えた世界」というテーマで、お送りしようと思います。
どうも、こんにちは。僕はなんなのかと言いますと、小林銅蟲という漫画家で、今は、MANGA pixivで数学の漫画とイブニングで料理漫画をやっております。よろしくお願いします。
今日は、巨大数というものについてお話をするんですけれども、非常にざっくりした感じでいかせていただきます。みなさん、巨大数を知っているかどうか、わからないですけども。要するに、すごく大きい有限の数。
ここにいっぱい、大きめの数が並んでますけど、実際、僕とか、ほかのファンの方が扱っているのは、もっと大きくて、宇宙の原子を全部使っても書けないような数です。
そういう、数が大きければ大きいほど、興奮する人たちがいます(笑)。僕も10年くらい前から興奮してるんですけれども。
(会場笑)
可能な限り大きな巨大数を作って眺めると。可能な限り。有限の数というのは、有限だからいくらでも大きくできるんじゃないのっていう話なんですけれども。
大事になってくるのは、どうやってものすごく大きい数を作るかという、その仕組みのほうにウェイトがあるんですね。どういうふうに作るか。要するに、原料を、3とかを巨大数を作る関数、生成器に入れるとでっかい数が出てくる、というのがメインストリームです。
要するに、大きな数を作るには、より強力な関数、生成器が必要だということになるんですね。当たり前ですけど、弱い関数では、強い関数に絶対勝てない。例えば、2xというのは、2のx乗に対して増加速度では絶対勝てない。こういうことが上のレベルでも起こってくるんですね。
日本とか海外でみんなやってるんですけど、みんなが各々勝手な方法で作ってくるので、どうやって関数の強さを比較したらいいのかというのが、けっこう長い間なかったんです。でもここ数年できてきました。比較用の関数というのがあるんですね。
その関数を、仮に、fn(x)と言うんですけども、この添え字のnの数が大きければ大きいほど、その関数は強いと言えるんですよ。例えば、x!(xの階乗)の関数は、f2(x)くらいだと。強さは2だと。
これに対して、超冪(ちょうべき)という、aのa乗がx個並んだような関数。これが、f3(x)くらいの強さなんですね。
わりと有名な巨大数で、グラハム数という非常に大きな数があるんですけれども。グラハム数を作ることができる関数というものの強さがどれくらいかというのを、さっきのfn(x)で表せるんですけど。これはですね、fω+1(x)であると。
(会場笑)
ωってなにか、と。
(会場笑)
ご存知の方もいるかと思いますが、無限ででてきますね。さっき有限だっつったのに、いきなり無限がでてきたんですけども。
(会場笑)
なんでかと言うとですね。我々、有限の巨大数を作るんですけれども、方法論として、機械に無限を突っ込むと有限の巨大数が出てくるというタイプの関数があるんですね。
さっき使ってるものさしの関数もそうなんですけれども。そうやってやると強いと。
無限にもいっぱい種類があって、それぞれ序列が決まっていたりもするので、より強い無限を生成器にぶち込んでやると、でっかい数が出てくるという通りがございます。
グラハム数に勝とうとした日本人がいまして、グラハム数よりでかくするだけのために作っただけの数という。とにかくでかいだけが取り柄の数。これがバージョン7まであるんですけど。
(会場笑)
さっきのグラハム数の強さが、ω+1でした。このふぃっしゅ数バージョン1が作れる関数の強さは、だいたいfω^2+1(x)くらい。
明らかに強いと。
(会場笑)
バージョン2になるとですね。fω^3(x)になります。
バージョン3になると、f(ω^ω+1)63+1(x)くらい。
ちょっと飛んで、バージョン5は、fε0+1(x)。
これも無限なんですけど、強さ的にはこういう強さですね。
(会場笑)
もちろんこのε0の上にも無限があって、階層がなんぼでもあるんですね。なんでこんな上の無限の話ばかりしてるかと言うと、いまどき、みなさんが作る巨大数がでかすぎて評価が大変だと。
とにかく、強さが全部無限の世界に入ってるんですね。表記できるのが。無限同士で強さを測らなくちゃいけないから、上の無限をいっぱい知ってなきゃいけない、扱えなきゃいけないという話になっちゃうので。最近、そのまま使えないような、わけわからないような無限とかも使えるようになってきているんですね。
さっきのωとかは、可算の順序数なんですけど、最近、非可算のやつとか巨大基数とか突っ込んできてる人たちがいて、非常に怖いんですけれども。
(会場笑)
今まで言ってきた巨大数に使う関数というのは、だいたい計算可能な関数で。そういう定義があるんですね。計算可能であるという。計算可能でない関数というのがあってそれを使うことによって、計算可能なものよりも常にでかい巨大数と関数が作れるんですね。
そういうわけで、巨大数業界の上のほうにいくと、わけわかんないやつがいっぱいいるんですよ。今回、そのわけわかんないやつの話をざっくり紹介しますと、「ラヨ数」というものがありまして。
定義書いてありますけど、長いんですね。要するに、ある数学の理論体系で表現できる一番でっかい数みたいな定義なんですね。
もちろん計算不可能なんですけど、これがけっこう長い間1位を占めていて、どうにか勝とうと思ったのが、やっぱり日本人で、ふぃっしゅ数バージョン7という。
(会場笑)
がんばって、プロセスをいじって強くして上回ったんですね。そしたら、また、外人ががんばって、ラヨ数を構成する論理体系自体を拡張して、さらにでかいのを作っちゃって。
ちょっと今、これよりでかい名前が付いている巨大数ってないんですね。今のところ、ビックフットが最強です。
そういう感じなんですけど。今のトピックというのが、今までのざっくりな感じで、数学の理論体系の強さ自体を巨大数に変えて殴り合っている状況というのがあります。
(会場笑)
けっこうえらいことになってるんですけども。そんなわけで、最上位の巨大数の話というのは、普段あまりできないので、(いつもは)もうちょっと下のほうの話をご紹介してるんですけど、今回無理やり、ご紹介しました。
それで、抜け落ちたお話がいっぱいございますので、インターネットで見ていただきたいものがいろいろございます。みなさま、おもしろい分野なので、ちょろっと触ってみたらいかがかなと思いますけれども、今回はこれで、終わりでございます。
ありがとうございました。
(会場拍手)
2024.12.20
日本の約10倍がん患者が殺到し、病院はキャパオーバー ジャパンハートが描く医療の未来と、カンボジアに新病院を作る理由
2024.12.19
12万通りの「資格の組み合わせ」の中で厳選された60の項目 532の資格を持つ林雄次氏の新刊『資格のかけ算』の見所
2024.12.16
32歳で成績最下位から1年でトップ営業になれた理由 売るテクニックよりも大事な「あり方」
2023.03.21
民間宇宙開発で高まる「飛行機とロケットの衝突」の危機...どうやって回避する?
PR | 2024.12.20
モンスター化したExcelが、ある日突然崩壊 昭和のガス工事会社を生まれ変わらせた、起死回生のノーコード活用術
2024.12.12
会議で発言しやすくなる「心理的安全性」を高めるには ファシリテーションがうまい人の3つの条件
2024.12.18
「社長以外みんな儲かる給与設計」にした理由 経営者たちが語る、優秀な人材集め・会社を発展させるためのヒント
2024.12.17
面接で「後輩を指導できなさそう」と思われる人の伝え方 歳を重ねるほど重視される経験の「ノウハウ化」
2024.12.13
ファシリテーターは「しゃべらないほうがいい」理由 入山章栄氏が語る、心理的安全性の高い場を作るポイント
2024.12.10
メールのラリー回数でわかる「評価されない人」の特徴 職場での評価を下げる行動5選
Climbers Startup JAPAN EXPO 2024 - 秋 -
2024.11.20 - 2024.11.21
『主体的なキャリア形成』を考える~資格のかけ算について〜
2024.12.07 - 2024.12.07
Startup CTO of the year 2024
2024.11.19 - 2024.11.19
社員の力を引き出す経営戦略〜ひとり一人が自ら成長する組織づくり〜
2024.11.20 - 2024.11.20
「確率思考」で未来を見通す 事業を成功に導く意思決定 ~エビデンス・ベースド・マーケティング思考の調査分析で事業に有効な予測手法とは~
2024.11.05 - 2024.11.05