2024.12.23
大量の問い合わせにデスクはお手上げ、現場はブチギレ…… 崩壊したチームを立て直した、kintoneによる業務改善の道のり
「空の移動革命、空飛ぶクルマに挑む」社員講演②(全1記事)
提供:株式会社デンソー
リンクをコピー
記事をブックマーク
木村光徳氏:はじめに、インバーターという電力変換機について、あまり馴染みのない方も多くいらっしゃると思いますので、電気自動車を例にとり、インバーターの説明を先にします。
高電圧バッテリーの直流の電力を交流電力に変換して、モーターを駆動する。またモーターの回生電力を直流電力に変換して、バッテリーを充電する。こういった動作をコントロールする電力変換機が、インバーターです。
こちらの回路図に示すように、半導体のスイッチ6つを使うのと、電力平滑用のコンデンサーというものが主な構成部品になっています。この半導体のスイッチングモジュールのスイッチをオンオフ制御すること、つまりモーターの三相巻線に印加される電圧を制御することで、モーターが駆動します。これがインバーターの特徴になります。
これらは半導体のスイッチング素子ですが、理想的なスイッチではないので、半導体スイッチをオンにして電流が流れる間、またスイッチングをするたびに損失が発生し、発熱します。
この発熱を抑えることが、インバーターを開発するにあたって大きなポイントになっています。車両向けインバーターでは、この半導体素子の発熱を水に落として、ラジエーターで空気に放熱するという方式、いわゆる水冷方式を取っております。
次にデンソー製のインバーターの特徴を説明します。従来、片面冷却方式といって、半導体素子の熱を片面から冷却する構造を取っていましたが、デンソーでは半導体モジュールの両面に冷却機を配置し、半導体素子の熱を両側から冷やす、両面冷却という構造を取っています。
こうすることで、従来の片面冷却と比較して、約2倍の冷却能力を実現しています。この技術で、小型・高出力密度を可能にしています。
両面冷却の技術は、両面から熱を引くというアイデアに加えて、デンソーがラジエーターで培ってきた熱交換器の技術、また内製の半導体モジュールの技術、それを実現する生産技術、これらを融合して実現しました。
ここまで、車両向けインバーターの説明をしましたが、ここからは、車両と空モビ(空のモビリティ)の特徴、違いについて触れていきたいと思います。
機体の総重量を比べると、クルマと空モビはほとんど変わらない重量です。それに対して、モーターとインバーター、電駆動システムの機体総重量に占める割合がクルマと空モビで大きく違うことがわかります。
この重量は、燃費、飛行距離に直結する重要なファクターになるので、空モビでは軽量化が非常に価値が高く、ここがクルマと空モビの大きな違いと捉えています。
私たちはこの軽量化に向けてのアプローチとして、先ほどお話しした半導体素子を低損失化し、従来クルマで採用していた水冷構造を簡素化して空冷化することで、システムトータルで軽量化を実現していくことを狙って、開発を進めています。
本日は空冷構造については詳しくお話できませんが、今回は低損失化のキー技術であるSiC技術について紹介します。車両向けのインバーターではシリコンデバイスが主流ですが、私たちデンソーは内製で、次世代の素子であるSiCを開発しています。
ここからSiCとシリコンの特徴について簡単に説明します。SiCとSi(シリコン)とを、それぞれの物性値、またそれに紐づく物理特性で比較したグラフがこちらです。
低損失・高耐圧と関わる絶縁破壊電界強度、大電力動作に関わる熱伝導率、耐量に関わる融点、高速動作に関わる飽和速度、高温動作に関わるエネルギーギャップ、すべての特性において、SiCがシリコンを上回っていることがわかります。
このことからも、SiCが大出力に対応しており、また低損失、高温、高速で駆動する素子であることがわかります。最初のスライドで説明しましたが、半導体スイッチング素子は理想的なスイッチではないので、スイッチングするたびに損失が発生します。
スイッチをオンして電流が流れる間に発生する損失を「導通損失」、スイッチングするたびに発生する損失を「スイッチング損失」と呼んでいます。
まず導通損失についてですが、絶縁破壊電界強度において、SiCはシリコンに対して約10倍の強度を持っているので、耐圧を確保しながら、電流が流れる時には抵抗として振る舞うドリフト層の厚みを、およそ10分の1にすることが可能です。こうすることで、大幅に導通損失を低減可能になっています。
またスイッチング損失に関しては、こちらも理想的なスイッチではないので、スイッチングをするたびに電圧と電流がクロスするような領域が存在し、電圧×電流で損失が発生しています。
SiCは高速で駆動できるので、その期間を極限まで短くできて、スイッチング損失を大幅に低減可能になります。
次に、デンソー製のSiC技術の特徴について説明します。デンソー製SiC技術「REVOSIC(R)(レボシック)」と呼んでいますが、高品質、低損失を実現するSiC技術の総称で、確信的な技術で世界を変革する、そういった意味を込めて、REVOSIC(R)(レボシック)と名付けています。
業界最高品質、超低欠陥を誇る6インチウエハから高効率を実現したパワーモジュール、またそれを駆動するインバーターまで、総合的にデンソーでは技術開発を進めています。
まず高品質を支える技術として、低欠陥RAFウエハという技術を紹介します。RAFとはRepeated A-Face growth methodの略で、異方向の結晶成長を繰り返すことで、欠陥を非常に少なくできる技術で、高品質なSiC結晶を成長させる技術です。
この技術を用いることで、高品質に加えて、大きな面積を高い歩留まりで実現することが可能になります。
続いて低損失を支える技術として、トレンチゲート型MOSFETを採用しています。このトレンチゲート構造を採用することで、セルピッチを狭くできて、複数のSiCセルを並べることで、低オン抵抗、低導通損失を実現しています。以上がデンソー製SiC技術の特徴になります。
私たちは車両向けの開発を通して、ほかにも今回ご紹介できなかったさまざまなインバーターに関わる要素技術を磨いてきました。これらの技術に加えて、SiCの技術や、本日ご説明できなかった空冷の技術を加えて、空のモビリティにチャレンジしています。
株式会社デンソー
関連タグ:
2024.12.20
日本の約10倍がん患者が殺到し、病院はキャパオーバー ジャパンハートが描く医療の未来と、カンボジアに新病院を作る理由
2024.12.19
12万通りの「資格の組み合わせ」の中で厳選された60の項目 532の資格を持つ林雄次氏の新刊『資格のかけ算』の見所
2024.12.16
32歳で成績最下位から1年でトップ営業になれた理由 売るテクニックよりも大事な「あり方」
PR | 2024.12.20
モンスター化したExcelが、ある日突然崩壊 昭和のガス工事会社を生まれ変わらせた、起死回生のノーコード活用術
2023.03.21
民間宇宙開発で高まる「飛行機とロケットの衝突」の危機...どうやって回避する?
2024.12.18
「社長以外みんな儲かる給与設計」にした理由 経営者たちが語る、優秀な人材集め・会社を発展させるためのヒント
2024.12.12
会議で発言しやすくなる「心理的安全性」を高めるには ファシリテーションがうまい人の3つの条件
2024.12.17
面接で「後輩を指導できなさそう」と思われる人の伝え方 歳を重ねるほど重視される経験の「ノウハウ化」
2024.12.20
「資格のかけ算」で切り開くキャリア戦略 4パターンの資格の組み合わせで自分の強みを最大化するヒント
2024.12.17
さんまさんと『アメトーーク!』蛍原さんのファシリテーションの違い 心理的安全性を高める「存在感を消す」スタイル
Climbers Startup JAPAN EXPO 2024 - 秋 -
2024.11.20 - 2024.11.21
『主体的なキャリア形成』を考える~資格のかけ算について〜
2024.12.07 - 2024.12.07
Startup CTO of the year 2024
2024.11.19 - 2024.11.19
社員の力を引き出す経営戦略〜ひとり一人が自ら成長する組織づくり〜
2024.11.20 - 2024.11.20
「確率思考」で未来を見通す 事業を成功に導く意思決定 ~エビデンス・ベースド・マーケティング思考の調査分析で事業に有効な予測手法とは~
2024.11.05 - 2024.11.05